
www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

CMSC201
Computer Science I for Majors

Lecture 18 – String Formatting

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Last Class We Covered
• Recursion

– Recursion
• Recursion

• Fibonacci Sequences
• Recursion vs Iteration

2

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted3

Any Questions from Last Time?

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Today’s Objectives
• To understand the purpose of string formatting
• To examine examples of string formatting

– To learn the different type specifiers
• To briefly discuss tuples
• To learn the details of string formatting

– Alignment
– Fill characters

4

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted5

Basic String Formatting

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Common Use Cases
• How can we…

– Print a float without the decimals?
print(int(myFloat))
• But what if we wanted it rounded up?

– Line information up into columns?
print(column1, "\t", column2)
• But what about when one thing is very long/short?

6

Accomplishing
either of these
would require a
lot of extra work

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

String Formatting Possibilities
• Align text left, right, or center

• Create “padding” around information

• Choose the padding character

• Control precision of floats
– Including automatically rounding up

7

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Anatomy of String Formatting

print("hello {:*^9}".format("world"))

• This would output:
hello **world**

8

details of how the
formatting will be applied

string that is being printed

name of the
method

information that
will be formatted

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Type Specifiers
• String formatting often needs to know the

exact type of the data it’s formatting
– Or at least how it should be handled

• The three specifiers are
d integer
f float
s string

9

These are common
specifiers shared by many

languages, including
Python, C/C++, and Java.

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Integer Formatting Examples
>>> classNum = 201
>>> print("Welcome to {}!".format(classNum))
Welcome to 201!

>>> print("Welcome to {:5d}!".format(classNum))
Welcome to 201!

>>> print("Welcome to {:05d}!".format(classNum))
Welcome to 00201!

10

If nothing is specified, no
formatting is applied

Specifying “too many”
digits will add padding

Adding a zero in front will
make the padding be zeros

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

{ : 0 # d }

Integer Formatting “Rules”

11

Will create
leading zeros

Minimum number of
digits displayed

(In actual code,
don’t leave

spaces between
anything.)

Must always contain
the opening and closing
curly braces, the colon,

and the 'd' specifier.

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Float Formatting Examples
>>> midAvg = 142.86581
>>> print("The midterm average was {:2.0}".format(midAvg))
The midterm average was 1e+02
>>> print("The midterm average was {:2.0f}".format(midAvg))
The midterm average was 143

>>> print("The midterm average was {:3.1f}".format(midAvg))
The midterm average was 142.9
>>> print("The midterm average was {:1.3f}".format(midAvg))
The midterm average was 142.866

12

Need to specify that it’s a
float to prevent truncation

Floats will never “lose” the
numbers before the decimal

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Float Formatting Examples
>>> midAvg = 142.86581
>>> print("The midterm average was {:15f}".format(midAvg))
The midterm average was 142.865810

>>> print("The midterm average was {:015f}".format(midAvg))
The midterm average was 00000142.865810

>>> print("The midterm average was {:.9f}".format(midAvg))
The midterm average was 142.865810000

13

Specifying “too many”
digits will add padding

Adding a zero in front will
make the padding be zeros

“Too many” digits after the
period will add trailing zeros

to the decimal (never spaces)

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

{ : 0 # . # f }_

Float Formatting “Rules”

14

Will create
leading zeros

Minimum number of
total characters displayed

(including ".")

Will automatically
round, or will pad
with trailing zeros

Maximum number of
digits after decimal

(In actual code,
don’t leave

spaces between
anything.)

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

String Formatting Examples
>>> best = "dogs"
>>> print("{} are the best animal".format(best))
dogs are the best animal

>>> print("{:7s} are the best animal".format(best))
dogs are the best animal

>>> print("{:07s} are the best animal".format(best))
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: '=' alignment not allowed

in string format specifier

15

If nothing is specified, no
formatting is applied

Specifying “too many”
characters will add padding

Doesn’t work with strings!
(At least, not by itself.)

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

{ : # s }

String Formatting “Rules”

16

Minimum number of
characters displayed

(In actual code,
don’t leave

spaces between
anything.)

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted17

String Formatting on
Multiple Items

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Applying to Multiple Items
• To apply string formatting to more than one

variable (or literal) within a string, simply use
– Two sets of {} braces with formatting info
– Two items in the parentheses at the end

>>> major = "CMSC"
>>> print("Ready for {:10s} {:04d}?".format(major, 202))
Ready for CMSC 0202?

• Will be matched up based on their order
18

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Possible Multiple Item Errors
• If there are too many items

– Python ignores the extra ones at the end
>>> print("It's {:10s} {:2d}, {:4d}".format("April", 16, 2018, "MD"))
It's April 16, 2018

• If there are too many sets of {} braces
– Python will throw an error
>>> print("It's {:10s} {:2d}, {:4d}".format("April", 16))
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
IndexError: tuple index out of range

19
The what index?

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Quick Side Note: Tuples
• Tuples are a data structure nearly identical in

behavior to lists
– Lists use square brackets []
– Tuples use parentheses ()

• Tuples are immutable
– Can be indexed, sliced, concatenated, etc.
– Does not allow “in place” editing or appending

20

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted21

Getting Fancy

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Alignment Options
• Can left, right, or center align with formatting:

– Left <
– Right >
– Center ^

>>> print("why not {:6s}?".format("both")) # default
why not both ?
>>> print("why not {:>6s}?".format("both")) # right
why not both?
>>> print("why not {:^6s}?".format("both")) # center
why not both ?

22

In Python 3, left is the
default for strings, and right

is default for numbers

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Padding Characters
• Default padding for strings is spaces
• Default padding for numbers is zeros

• Can replace padding with any single character
– To prevent errors, specify the alignment too

>>> print("why not {:+<6s}?".format("both"))
why not both++?
>>> print("Is this {:~^8d}?".format(currYear))
Is this ~~2018~~?

23

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Using Variables
• You can use variables for any of the values in

the formatting (size, padding character, etc.)
– Must use concatenation to put together
>>> c = "~"
>>> print(("why not {:" + c + "^7d}?").format(2))
why not ~~~2~~~?

• A better way is to make the string first
>>> sentence = "why not {:" + c + "^7d}?“
>>> print(sentence.format(2))

24

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

{ : X < otherStuff }

“Rules” for Fancy Stuff

25

Padding character
comes right after :

(In actual code,
don’t leave

spaces between
anything.)

Must have an alignment if
you have padding character

All the other formatting
info comes after these two

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Example Usage of Formatting
kennel = ["Akita", "Boxer", "Collie", "Dalmatian", "Eurasier"]
for i in range(len(kennel)):

print("There is a {:>10s} in pen".format(kennel[i]), i)

– What would the outcome be here?
There is a Akita in pen 0
There is a Boxer in pen 1
There is a Collie in pen 2
There is a Dalmatian in pen 3
There is a Eurasier in pen 4

26

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted27

String Formatting Exercises

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Formatting Exercises
print("My dog {}.".format("Hrabowski"))

• What formatting is needed for each outcome?
My dog Hrabowski.

My dog Hrabowski .

My dog _Hrabowski_.

My dog _Hrabowski__.

28

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Formatting Exercises
print("My dog {}.".format("Hrabowski"))

• What formatting is needed for each outcome?
My dog Hrabowski.

{:>11s}
My dog Hrabowski .

{:<11s}
My dog _Hrabowski_.

{:_^11s}
My dog _Hrabowski__.

{:_^12s}
29

Left aligned is default,
so specifying isn’t

technically necessary.
{:11s}

If perfect centering isn’t
possible, the extra

character goes on the right.

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

More Formatting Exercises
PI = 3.1415926535897932384626433
print("Isn't {} great?".format(PI))

• What formatting is needed for each outcome?
Isn't 3.141593 great?

Isn't 3.141593 great?

Isn't 003.14 great?

30

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

More Formatting Exercises
PI = 3.1415926535897932384626433
print("Isn't {} great?".format(PI))

• What formatting is needed for each outcome?
Isn't 3.141593 great?

{:.6f}
Isn't 3.141593 great?

{:10f}
Isn't 003.14 great?

{:06.2f}

31

The default is also
6 decimal values.

{:f}

Padding numbers
with zeros doesn’t

require an alignment.

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Even More Formatting Exercises
• What formatting would be generated here?

print("{:1.3f}".format(PI))

print("{:*^10s} is great!".format("Neary"))

print("It's over {:0<4d}!".format(9))

print("{:>7s} {:^^7s}".format("Hello", "world"))

32

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Even More Formatting Exercises
• What formatting would be generated here?

print("{:1.3f}".format(PI))
3.142

print("{:*^10s} is great!".format("Neary"))
Neary* is great!

print("It's over {:0<4d}!".format(9))
It's over 9000!

print("{:>7s} {:^^7s}".format("Hello", "world"))

Hello ^world^

33

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

• Sophie Wilson
– Designed the Acorn

Micro-Computer in 1979
• Wrote BBC BASIC, the

programming language
– Designed the instruction

set of the ARM processor
• Most widely-used

architecture in modern
smartphones

34

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Announcements
• Project 2 is due Friday 11/9 at 8:59:59PM

• Midterm #2 is next week!

35

www.umbc.eduAll materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted

Image Sources
• Sophie Wilson (adapted from)

– https://www.flickr.com/photos/101251639@N02/9669448671

36

